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Abstract

In this paper we study line search global strate-
gies based on one of two “curvature step-sizes”:
the maximum curvature step-size MCS ([1]
and [2]), and the maximum projected curva-
ture step-size MPCS. An extension of some
geometrical topics, used to define the first step-
size, enables defining the second one. In this
extension we introduce the optimization plan,
and we project the curvature on it. Using this
projected curvature, an estimation is obtained
for the first stationary point arc length on a
search curve. Comparing arc lengths for dif-
ferent search curves enables defining both of
curvature step-sizes. The two global strategies
based on curvature step-sizes when used with
different common directions, like the steep-
est descent, Gauss-Newton and Levenberg-
Marquardt directions, gives more efficient al-
gorithms than others with classical line search
strategies based on the unit Newton step-
size. Convergence of algorithms using curva-
ture strategies is studied, and their behavior is
illustrated on some numerical examples.
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z optimization variable
y descent direction
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k subscript for the k-th iteration

a optimization step-size

F(z) € R? residual

F; ith component of F'

J Jacobian matrix of F'

flz) LIIF(z)||* € R objective function
{.,.) the canonic scalar product.

Vf Gradient of f for the scalar product (.,.).
H Hessian of f

p path on the output set

v velocity of p

a curvature of p

apr projected curvature of p

v arc length along p

r norm of residual on p

p radius of curvature of p

R lower bound for p on (part of) p

ppr radius of projected curvature of p
R, lower bound for pp, on (part of) p
MCS Maximum Curvature Step.

M PCS Maximum Projected Curvature Step.

1 Introduction

Let be an application F' : R® — R?, both of the
spaces R"® and R™ are supplied by the canonical
scalar product, denoted (., .), for witch they are
Hilbert spaces. We discuss here the resolution
of a nonlinear least-squares problem

4 minimizes f(z) < %HF(:U)HZ on R™. (1)
The special structure of the objective function
enables the use of some specific tools to study
and solve this problem as it is now explained.
First we denote by F;(z) the ith component of
the m-vector F(z), J(x) the Jacobian matrix
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of F at z, and H(z) the Hessian of f at z, so
we have:

H(z) = (o) T@) + Y Fi@V'F). ()

i=1

Solving numerically (1) amounts to finding a
stationary point x, hence satisfying

Vf(z)=0. (3)

A descent algorithm applied to the problem (1)
defines at every iteration k:

1. A descent direction yy, satisfying:
(Vfr,yx) <O. (4)
2. A descent curve g; : RY — R” such that:

For this paper, it has the shape:

gr(0) = =y,

gr(a) = zg + ayy. (6)

3. A descent step-size ay, which is required
to decrease sufficiently the objective func-
tion f.

We say that the algorithm is convergent if it
ensures:

Jim Vf(ax) =0. (7)

Applying Newton algorithm to solve (3) gives
at iteration k a direction yj, solution to the fol-
lowing linear system:

Hyy + Vi =0. (8)

Then the next iterate will be zp + y; if it is
‘accepted’. The acceptance of a step-size oy, for
a descent direction d is decided by a decrease
condition (Armijo condition):

f(zr + arye) < flar) +woy (yk,Vf(mk»(a )
9

where 0 < w < 1. An additional condition to

prevent the step-size from being too small is
added like Wolfe condition:

(i, Vf (2 + aryr)) > &' (e, Vf(z1)), (10)

or Goldstein condition:

f(@r + aryr) > far) +w'ag (yk,Vf(l'k)() . )
11

In Quasi-Newton algorithms, the descent direc-
tion yy is defined by the equation:

Mpyr + Vfr = 0. (12)

where M}, is a symmetric and positive definite
matrix. The acceptance of 2 + y as a next it-
erate is a consequence of the followinf theorem
given by Dennis and Moré (see [4]):

Theorem 1.1 Let f be of class C3. Consider
the iteration xr41 = Xk + oYk, where yr has
the form —Mk_1 is the descent direction defined
by (12), and oy satisfies (9) for w < % and
(10) for some W' €]w, 1[. If (z1) converges to a
stationnary point & such that H(Z) is positive

definite, and if:

L IO~ H @)l
N A

0, (13)

then:

o For k sufficiently large, the unite step-size
ar =1 is accepted as a Wolfe step-size.

o If a, = 1, for k sufficiently large, then
(zr) converges to & superlinearly.

In the light of this theorem we will discuss ac-
ceptance of unit step-size for non-linear least-
squares descent algorithm. For the Newton di-
rection yy, (13) is clearly satisfied, so the unit
step-size has a good chance of being accepted
in a neighborhood of the solution. However
computation of yy requires the Hessian H(z),
which is generally expensive. Using approxi-
mations of H(z) are useful to reduce the com-
putational cost. One approximation is:

H(r) = G(z), with G(z) = J(z)!J(z) (14)

Due to (2), we observe that when F' is small
or almost affine, G(x) is considered to be a
good approximation of H(z). The use of G(x)
gives rise to the so-called Gauss-Newton direc-
tion yg N, computed form the linear equation:

G(z)yan + Vf(z) = 0. (15)

The matrix G(z) is symmetric and positive
semi-definite. It is positive-definite if J(x) is
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injective. To check acceptance of the unit step-
size for Gauss-Newton direction, we will check
the condition (13). It means that G(zy) be-
comes increasingly an accurate approximation
of H(&) along the direction yg. But if G(zy,) is
not a good approximation of Hy, this property
seems difficult to be satisfied, and we are not
sure of the acceptance of the unit step-size. An-
other famous algorithm, from the same family,
is the Levenberg-Marquardt algorithm. It per-
forms a descent direction using a matrix L(z):

L(z) = G(z) + A, (16)

with A > 0, called the damping factor, and
I is the identity matrix. The Levenberg-
Marquardt direction yr s is deduced from:

L(z)yLm + V f(z) = 0. (17)

This algorithm could be seen also as an approx-
imated Newton algorithm for a least-squares
problem. The matrix L is symmetric and pos-
itive definite for all A > 0. For the same rea-
son as for the Gauss-Newton algorithm, the
unit step-size is still not surely accepted here.
Even more, in the steepest descent algorithm
the unit step-size is used, if we try to see that
in the light of the theorem (1.1) we find that
the condition (13) is generally far from being
satisfied by M, = I, then we can expect that
the unit step-size could be rejected as a first
step-size guess. There is no theoretical result
justifying the step-size guess a = 1 for Gauss-
Newton and Levenberg-Marquardt algorithms,
nevertheless the fact that it is the only one
mentioned in most of optimization documents,
and it is widely used. When this step-size guess
is chosen but not accepted, most of the al-
gorithms reduce the step-size by backtracking
and interpolating and test acceptance on every
new step-size value.

Consequently an accepted step-size guess for
Gauss-Newton algorithms is a vital question in
order to reduce the price, paid for bad step-
size guess, in supplementary evaluations of the
function F.

Here we propoe new step-sizes based on the
curvature or on the projected curvature, in
some sens to precise, at the current point.
These steps are more adaptable on variations
of curves forme than the unit step-size is. The
radius of curvature R or the radius of pro-
jected curvature R,, is evaluated, and then

used to guess a step-size . The advantage
of the method is the total separation of two
problems, computing a descent direction, and
supplying an accepted step-size for the com-
puted direction. The curvature and projected
curvature steps could be applied for every de-
scent direction y. If applied the convergence of
the algorithm should be revised in the light of
Zoutendijk lemma ([3]). Here we prove conver-
gence for the steepest descent, Gauss-Newton,
and Levenberg-Marquardt directions.

2 Curvature steps

In this section, we introduce the (Mazimum
Projected Curvature Step (MPCS) as an exten-
sion of the Maximum Curvature Step (MCS).
We omit some details here, where the most of
them could be found in ([1] and [2]).

2.1 Moving on a path of bounded
projected curvature

We denote in this section by p a path of R? pa-
rameterized by its arc length v, with W2 reg-
ularity, and by v(v) = p'(v) and a(v) = p"'(v)
the corresponding velocity and acceleration.
We know that:

||lv]| =1, and (a,v) = 0. (18)

The curvature radius p €]0, co] is defined by:

1
— = ||a(v)||- 19
o) lla()l (19)
When the curvature a(v) is not nul, the oscu-
lating plan, denoted by S, is the plan:

S(v) = Vect{v(v),a(v)}. (20)

We call optimization plan, denoted by O, the
plan:

O(v) = Vect{p(v),v(v)}. (21)

if the p(v) and v(v) are not paralell, otherwise
O(v) = S(v) (when the curvature is not nul).
When the curvature is nul, we consider that
every plan containing p and v is an osculating
and an optimization plan. The results for this
case could be considered as asymtotic ones for
the case of non nul curvature corresponding to
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[la]| = 0. For the following we shall consider
that the curvature is not nul. We define the
vector:

n(v) { ﬁ(y), if p|| v else:
= p—(p,v)v
To—(wotell (V);

(22)

We introduce the projected curvature, denoted
by apr(v), to be the projection of a(v) on the
optimization plan O(v), it equals:

apr(v) = (a,n)(v)n(v), (23)
We define the projected curvature radius
ppr(v), by:
1
Ppr (V)

= llapr(W)]- (24)

We denote by 1(v) the angle between the op-
timization and the osculating plans. Then
clearly we have:

p(v) = ppr(v) cos(4(v)). (25)

The origin py and the initial velocity vy are
given:

po ER? vy € RY (26)

We suppose that vy is a descent direction for
the residual function r(v) = ||p(v)||:

{Po,v0) < 0. (27)

We introduce the set:
P = {peW?>(R") such that:
p(0) =po , v(0) = o} (28)

The first stationary point of r is defined by:

7 = Inf{v > 0 such that diy(rQ) =0} ,
(29)

the corresponding residual is denoted r(7) = 7.
We will study the path p(v) for arc lengths v €
[0,7]. For a path p € P, we denote by:

[(p;0)|(¥), ;and  (30)
r*v)—vi(v),  (31)

vi(v) =
’I”L(l/) =

the linearized displacement and residual for the
current point p(v) respectively. Studying the
linearized residual 7 (v) on [0,7] gives the fol-
lowing inequality for 7 (see [1] and [2]):

Theorem 2.1 For a pathp € P, let R €]0, ]
be such that:

Wwel0,], ) 2R (32)

Then the arclength U of the first stationary
point of p satisfies:

v 2> vm(R), (33)
r <r(wmu(R)) < Tm(R) (34)

where:
vu(R) = Rarctan Lf«?(o)’ and  (35)

Fur(R) = (R +72(0)” +v2%(0) - R,
(36)

denote respectively the worst displacement on p
without encountering the first stationary point,
and the corresponding worst residual.

We notice that, in practice, the global informa-
tion (32) about p is difficult to get. But a local
information is still useful as it is shown in the
following proposition:

Proposition 2.2 Let p € P and R, > 0 sat-
isfy:

por(V) 2 Rpy Vv € [0, 00 (Rpr)] (37)

where pp, s the radius of projected curvature
(24). Then:

v Z 7M(Rpr) ) (38)

T <r(@m(Rpr)) < Fm(Rpr) - (39)
If we replace the condition (37) by:
p(v) >R Vve0,oy(R)],  (40)

then the results (38) and (39) hold for R. In
fact (25) shows that (40) implies (37) for R.
The largest value Ry, of Ry, satisfying (37)
on [0,7p(R,,)] realizes the smallest value of
s (Rpr). So it is a solution to:

7=0om(R) , Rp=Rpmp(P). (41)
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where:

R pr(v) = Inf{ ppr(7) , 7€ [0, 1]} . (42)

refers to the smallest radius of projected cur-
vature on p up to v. If we denote by:

R, (v) =Inf{ p(r) ,7€[0,V]} . (43)
From (25), it follows that:
Rm,pr(V) 2 Rm(lj), (44)

but 7ps is an increasing function while 77 is a
decreasing one, then using the projected cur-
vature to define the step enables to go far-
ther towords the objective point, and to get
a better decrease of the residual than using
the curvature could do. Now we can define
the maximum projected curvature step (respec-
tively maximum curvature step) using formula
(35) applied for some Ry, (respectively R) sat-
isfying (37) (respectively (40)).

2.2 Application on the image of a
descent curve

We consider in this section the resolution of
the least squares problem (1) by a descent al-
gorithm. At a point z, let @ ~ g(a) be a
descent curve in the parameter space, for a de-
scent direction y. We associate with g a path
P in the data space defined by:

pla) = F(g(e)) Va0, (45)

and we denote by

o) = | IF @ dr (46)

the arc length function along p. Now let p
be reparameterization of p by the arclength v.
The averge value of ||| on [0, o] is denoted by
171l(ex), it equals:

[7l(e) = 2. (47)

The curve g and the mapping F' are supposed
regular enough to satisfy:

peCP®(RY) . (48)

First we evaluate:

p(0) = F(zy) ,
7'(0) = F'(zr)-yr , (49)
7"(0) =F"(xx)-(Yk, yr) + F'(z1).9" (0).

then vectors determining osculating and opti-
mization plans of p, defined in the subsection
2.1 are given by:

0),v(0))v(0))/ 17 (01
0)/llp = (p,v)v||(0)
(50)

Then we deduce from the formula (22) and (23)
the projected curvature ap-(0) and its radius

ppr(0).-
Now we can define our step-sizes:

Definition 2.3 Let Ry, be a lower bound for
Ppr Satisfying the condition (37). We define the
maximum projected curvature step-size MPCS
ap to be the solution of the equation:

viam) = vm(Rpr)
vy (0)

B () Y

= R, arctan

The step-size defined by the equation (51),
where a lower bound R satisfying the condition
(40) is used for, this step-size is called the maz-
imum curvature step MCS.

The following theorem available for both MCS
and MPCS.

Theorem 2.4 We denote by R,, the real sat-
isfying one of the two conditions (37) or (40),
and we denote aps the cooresponding step-size
defined by (51). Then:

viam< v, (52)

flglam)X f(z) + amw(anm)f'(z)y , (53)

where o ~ w(a) is defined by:

It satisfies:
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The inequality (53) is a decreasing condition
satisfied then by an(R,,) when R, satisfies
one of two inequalities (37) and (40). The value
of the decreasing coeflicient w usually used for
the decreasing condition (9) is w = 107%, we
deduce that aps(R,,) has a good chance of be-
ing accepted. The limite (55) talls that small
step-size are surely accepted.

We discuss now how to find numerically R,,
and then deduce ap (R, ). We choose to do
this for the step-size MPCS, as the two step
have similar definitions. We take R,, of the
form:

Ry = koTippr(0) with 0<7 <1, (56)

where 0 < k¢ depends on the choosen step-
size, it equals to 0.9 for the MPCS and to 1.5
for the MCS. The integer ¢ depends on pp,
variations, its value is increased if the decreas-
ing condition (9) is not satisfied by an(R.)-
So ko7! is a security factor which accounts for
the possible increase of the projected curvature
along the path.

In order to compute the maximum projected
curvature step we use the linear approximation
of a~ v(a):

v(a) = a [|p'(0)l, (57)

in which case ays is given by:
au||p'(0)]| = Zar(R). (58)
We have now all we need to introduce our new

algorithms, and to study their convergence.

3 Curvature and projected

curvature algorithms,
discription and conver-
gence

These two algorithms are named corresponding
to the step-size used. First we give the follow-
ing general discription of both of them then we
will study their global convergence.

Algorithm 3.1 (Curvature Algorithms)

1. Initialization: k =0, xy.

2. While (k < kmax)

(a) Comput Fy, Ji, and V fi.

(b) If (Vfr < €qr) then x* = xy,

(¢) Else evaluate for the descent curve gy,
the quantities: py(0), p,(0), Py(0),
pi(0), v (0), and ar(0).

(d) Evaluate py(0) for MCS or pp, 1 (0)
for MPCS,

(e) Initialization i = 0.

(f) While (i <imaz)

i. Evaluate R, by (56) and ay by
(51) and (58).

ii. If the condition (9) is satisfied
then put Ry p = Ry and o =
ay and go to (2g).

11. Else increase i.

(9) Calculate the next iterate:

Tr+1 = gr(o).
(h) increase k.

The main tool to study the convergence of a
descent algorithm is the Zoudendijk condition
([3]). This convergence depends on proprieties
of the sequence (R, )r>0 defined previously
at (2(f)ii). All the results of this section are
available for both MCS and MPCS.

Proposition 3.2 (Zoutendijk Condition)
Let the sequence xj, satisfy the following two
conditions:

1. There is a strictly positive real C' such that
for all k:

flzryr) < flxr) — C||VF(xr)||? cos? by
(59)

2. The sequence (f(zr))k>0 s bounded from
below.

Then the series Y, <o |V f(zk)||* cos® 6x con-
verges. If furthermore the sequence cos® 0y
bounded away from zero then:

lim Vf(zy)=0. (60)

k— o0

Proposition 3.3 Let (zx)r>0 be a sequence
generated by a descent algorithm of mazimum
projected curvature step to solve problem (1).
If the following facts hold :
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1. The sequence of linear
(F'(zk))k>0 is M bounded.

applications

2. The sequence (Rm k)r>0 is bounded away
from zero by Ry in.

Then we have for every iteration k:
f(@r41) < f(zr) = CIV f(@p)l| cos® O

Where 0y, describes the angle between the gradi-
ent V f(xr) and the descent direction yj,. And
the constant C' could have the value:

_ ™ Roin
8M? Rmin + [|F(o)|

C (61)

To get convergence, we need to study the de-
scent angle 6}, for the chosen descent direction.

Theorem 3.4 The quantity cos(6y) is lower
bounded below by a strictly positive number B
in any of the following cases

1. The descent direction is the steepest de-
scent, then we have B = 1.

2. If the sequence of Jacobians (F'(z))k>0 45
bounded by a constant M, and uniformly
B injective, then for the Gauss-Newton di-
rection we have B = (8/M)2.

3. If the sequence of Hessians (f"(zk))k>o0 is
bounded by M and et uniformly 3 coercive,
then for the Newton direction we have B =

(B/M).

4. If the sequence of Matriz (My)k>o 1S
bounded by a constant M and et uniformly
B coercive, then for the Quasi-Newton di-
rection we have B = (8/M).

5. For Levenberg-Marquardt direction, if the
damping factor Ay equals to :

B

IR, (62)

Ak =

then cos(6y) is bounded below by B.

We can see that the Levenberg-Marquardt di-
rection gives a choice of the lower bound B, and
it does not need the Jacobian to be injective.
We shall see in the following section results for
some of the previous directions.

4 Numerical Experiments

We compare the behaviour of five algorithms
on a testing example. These algorithms are :

e Armijo Algorithm that uses a unit step-
size as an initial guess, if it is rejected
quadrature interpolation and backtrack-
ing are applied to find an adequate step-
size.

e Wolfe algorithm based on testing both
conditions (9) and (10) to accept a step-
size, but if it is not accepted the algorithm
apply backtracking and cubic interpola-
tion to find a new one.

e Goldstein algorithm, it replaces Wolfe con-
dition (10) by Goldstein condition (11),
and it applies backtracking and quadratic
interpolation to look for a new step-size if
the guessed value, initiated to one, is not
accepted.

e The Maximum curvature step-size (MCS),

see ([1]).

e The Maximum projected curvature step-
size (MPCS) introduced in section 2.

One of the five following raisons implies to stop
the iterative process:

e In the main loop, where the descent direc-
tion y is copmuted, the maximum number
of iteration kmax is reached (T' = 0).

o In the inner loop, where a step-size is per-
formed, the maximum number of step-size
evaluation iy, is reached (T = 1).

e The norm of the gradient V f, is less than
a given precision eyy (T = 2).

e The variation in the objective function
fr — fry1 for an accepted step-size is less
than a given precision e; (T = 3).

e The norm of ayyy, is less than a given pre-
cision €, (T = 4).

For all tests we took:
(kmax; Z.max) = (4000, 20)7
and:

(evy,€p,€z) = (1076,10724,10724)
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We mentionne that stoping for the last three
reasons means that we have the best result for
a given choice of precisions. We consider that
there is no convergence if one of the first two
cases holds. In the tables 1, 2, and 3, we have
used the following notations:

e N, refers to the number of descent direc-
tion calculus iterations.

e N, indicates the number of model evalua-
tions.

e N3 is the number of evaluated and non
accepted step-sizes.

4.1 Acceptance of Curvature

Steps and the wunit step-
size for different descent
directions

We choose to invert a regularized version of
the Powell example F' ([5]), because it has a
modulable difficulty. It is defined by:

F=8&-4d, (63)
where ®: Q=] —1,+00[xR C R? — R? is
a defined by:

Z1
B(z1,m2) = | gt +225 | (64)
€EX9

The vector d represents the data to be inverted:

1
d= |1 (65)
0

Since d does not belong to ®(2), we look for
its projection, for which the minimum residual
will be strictly positive. For the two first tests
we put € = 0.01, but for the theird € is equal
to zero. Results of five descent algorithms with
the Gauss-Newton direction are given in table
1. Here Goldstein, MCS, and MPCS convege,
and MPCS algorithm realizes the least cost.

Table 1: Gauss-Newton Algorithms
Algorithm | Ny N, N3 T

Armijo 4000 | 53794 | 45794 | O
Wolfe 4000 | 31958 | 23958 | O
Goldstein | 1318 | 4157 | 1522 | 2
MCS 1548 | 6054 | 1412 | 2
MPCS 262 985 199 3

If we check acceptance of the step-size for the
last iterations on figures 1, 2 and 3, we see that

Evaluated steps, (N, =20)

JII'T IWHH{

200 400 600 800 1000 1200 1400

Figure 1: Goldstein algorithm; evaluated steps

Evalated steps, (V,,220)

Figure 2: MCS algorithm; evaluated steps

Evaluated steps, (N, =20)

Figure 3: MPCS algorithm; evaluated steps

first evaluation of curvature step-sizes is ac-
cepted in the neighborhood of the solution, and
we dont have to reduce the step-size, it is not
the case for Goldstein step-size, it still needs
two evaluations to get an acceptable step-size.
This fact could be seen clearly in the next ex-
ample, where the steepest descent direction is
used.
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Results in table 2 show that we have conver-
gence of four algorithms, where the best algo-
rithm is the MPCS algorithm, it realizes the
least cost. Both MCS and MPCS are often ac-
cepted:

Table 2: Steepest Descent Algorithms

Algorithm | N; N> Ns | T
Armijo 703 | 4882 | 3477 | 2
Wolfe 565 | 2023 | 894 | 2
Goldstein 4 31 23 1
MCS 91 272 1 2
MPCS 75 | 223 0 2

In the last example, the third component
of ® is set to zero € = 0, so no information
on z, is available. The descent direction is
set to be Levenberg-Marquardt direction,
where the damping coefficient is deduced
from (62) for B = 0.1. The results are given
in table 3, where a reference trust region
algorithm for least squares problems, denoted
by RC, was called in Matlab environment. Re-
sults show the relative efficeincy of MCS and
MPCS, they realize a low iteration number N;.

Table 3: Levenberg-Marquardt
Algorithms

Algorithm | Ny | Ny | N3 | T

Armijo 188 |1 375 | 0 | 2

Wolfe 188 | 375 | 0 | 2

Goldstein | 188 | 375 | 0 2

MCS 35 1103 | 0 | 2

MPCS 79 [ 235 0 | 2

RC 61 | 62 - 4
Conclusion

Both maximum curvature step-size and maxi-
mum projected curvature step-size show a good
behaviour with a frequent advantage for the
second. The convergence and the adaptativ-
ity of both of them with several descent di-
rections is shown theoriticaly and numerically.
They have more chance than the unit step-
size of being accepted when other descent di-
rections than the Newton direction is used
in a descent algorithm. A descent algorithm
of Levenberg-Marquardt direction with any of
curvature steps is a rubustic algorithm for solv-
ing strong non linear least squares, it gives

good results even if while computing the Ja-
cobians become singular.
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